Proteomics is the study of proteomes on a vast scale. A proteome is a collection of proteins made by a living organism, system, or biological milieu. We can talk about a species' proteome (for example, Homo sapiens) or an organ's proteome (For example, the liver). The proteome is dynamic, varying from cell to cell and changing throughout time. The proteome reflects the underlying transcriptome to some extent. However, in addition to the expression level of the relevant gene, many other factors influence protein activity (which is generally measured by the response rate of the processes in which the protein is engaged). It is currently reliant on decades of technological and instrumental advancements. Advances in mass spectrometry (MS) technology, protein fractionation techniques, bioinformatics, and other fields have all contributed to these advancements.
Title : Improving health in over 40,000 patients: The impact of nanomedicine fighting antibiotic resistant infections
Thomas J Webster, Brown University, United States
Title : Advancement in dual lateral flow immunoassay design for sensitive, rapid detection of rotavirus and adenovirus in stool samples
Ayan Ahmed Isse, Genexus Biotech Company, Somalia
Title :
Luis Jesus Villarreal Gomez, Universidad Autonoma de Baja California, Mexico
Title : Renewed novel biotech ideas, with bioreactor bioengineering economic impact
Murray Moo Young, University of Waterloo, Canada
Title : Osmotic lysis–driven Extracellular Vesicle (EV) engineering
Limongi Tania, University of Turin, Italy
Title : Diversity analyses of microbial communities in Armanis gold-polymetallic mine and acid mine drainage: Bioremediation
Anna Khachatryan, SPC Armbiotechnology of NAS of Armenia, Armenia